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Abstract: The purpose of this paper is to advance a mathematical model for reviewing to simulate biological flows such as 

blood flow in arteries or veins, flow of urine in urethras and air flow in the bronchial airways. They can also be used to study 

and prediction of many diseases, as the lung disease (asthma and emphysema), or the cardiovascular diseases (heart stroke), 

Makinde (2005). In this work, laminar flow of an incompressible viscous fluid through a collapsible tube of circular cross 

section is considered. Collapsible tubes are easily deformed by negative transmural pressure owing to marked reduction of 

rigidity. Thus, they show a considerable nonlinearity and reveal various complicated phenomena Our objectives are to study 

the effect of temperature along the tube as the fluid Prandtl number and Reynolds number increases. We launch the 

mathematical formulation of the problem. The problem is solved by using power series and perturbation techniques with help 

of boundary conditions and results are displayed graphically for different flow characteristics, velocity profile. 
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1. Introduction 

In human body, all the channels are malleable and also 

collapsible. That is, when the exterior pressure exceeds the 

interior pressure, the tube cross-sectional area can be 

deliberately shortened, if not fully reduced. In this paper, a 

mathematical model to simulate biological fluid flow in a 

collapsible tube is presented. Methodical solutions are made 

for the problem using perturbation technique. The computer 

extension of the resulting power series solutions, its analysis 

and analytic extension, We obtained accurately a turning 

point Rc (R the flow Reynolds number), as well as the 

asymptotic performance of the skin friction and fluid 

pressure gradient as R → 0 on the secondary solution branch. 

The model is most appropriate to simulate wind tunnel tests 

on rheological phenomenon in physiological systems. is a 

narrowing of any tubular structure in the body, including 

blood vessels, heart valves, vertebral canal and the GI area. 

Blood vessel narrowing is one of the more common usages of 

this term. High cholesterol could contribute to the stenosis of 

an artery when it accumulates on the inner wall of the artery. 

This accretion, referred to as atherosclerosis, can build up 

within the artery to the point where it reduces blood flow to 

organs of the body. When blood flow is reduced, nutrients 

and oxygen cannot travel to the tissues that need it. Below 

are a series of illustrations that will help us to understand the 

process of atherosclerosis (vascular disease) and the kinds of 

problems that can arise in this condition: 

The major research goal remains, the full understanding of 

the flow structure and the mechanism driving this flow. Many 

previous theoretical works on flow in collapsible tubes 

concentrated on the development and analysis of simpler 
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models, by reducing the spatial dimension of the problem, 

which involve a number of ad-hoc assumptions e.g., Contrad 

(1969), Grotberg (1971), Flaherty et al. (1972), Cowley 

(1982), Bonis & Ribreau (1987), etc. Experimental example 

of the work that have been done on collapsible tube includes 

the one performed with finite-length elastic tubes whose 

upstream and downstream ends are held open (i.e., Starling-

resistor, Brower & Scholten 1975, Bertram 1986). Inside a 

pressure chamber, thin-walled elastic tube (made of latex 

rubber) is mounted on two rigid tubes. Fluid (liquid or gas) 

typically water or air respectively is driven through the tube, 

either by applying a controlled pressure-drop between the 

ends of the rigid tubes or by controlling the flow rate. If the 

external presssure exceeds the fluid pressure by a sufficiently 

large amount, the tube buckles non-axisymmetrically, which 

then leads to a nonlinear relation between pressure-drop and 

flow rate. At sufficiently large Reynolds numbers, the system 

produces self-excited oscillations, and exhibits hysteresis in 

transitions between dynamical states, multiple modes of 

oscillations (each having distinct frequency range), rich and 

complex nonlinear dynamics (Bertram et al. 1990). The 

inertia and resistance of the fluid in the supporting rigid tubes 

have an important influence on the system’s overall 

dynamics. This experiment forms the basis for most recent 

theoretical investigations due to its three-dimensional nature. 

Meanwhile, Bertram and Pedley (1982), Bertram and 

Raymond (1991) investigated two-dimensional channel 

theoretical model with one wall of the channel been replaced 

by a membrane under longitudinal tension, viscous flow is 

driven through the channel by an imposed pressure-drop. The 

variation between the external pressure and the internal flow 

determine the deformation of the membrane. The dynamics 

of the problem is described by nonlinear ODE’s whose 

numerical solutions exhibit oscillatory behaviour reminiscent 

of that observed in experiments. Despite the difficulties of 

producing two-dimensional flows experimentally, this system 

still attracted considerable theoretical attentions. Since it 

avoid the complications of three-dimensional flows found in 

the Starling-resistor, while still exhibiting phenomena such as 

flow limitation and self-excited oscillations.  

Meanwhile, mathematical model of physical phenomena 

often results in nonlinear equations for some unknown 

function. Usually the problems cannot be solved exactly. The 

solutions of these nonlinear systems are dominated by their 

singularities: physically, a real singularity controls the local 

behaviour of a solution. There is a long tradition in applied 

mathematics to solve nonlinear problems by expansion in 

powers of some “small” perturbation parameter. The 

advantage of this approach is that it reduces the original 

nonlinear problem to a sequence of linear problems 

(Makinde, 1999). However, it is not always possible to find 

an unlimited number of terms of power series. Often it is 

possible to obtain a finite number of terms of that series and 

these may contain a remarkable amount of information. One 

can reveal the solution behavior near the critical points by 

analyzing partial sum (Makinde, 2001). Over the last quarter 

century, highly specialized techniques have been developed 

to improve the series summation and also used to extract the 

required information of the singularities 

We investigate the flow of a viscous incompressible fluid 

in a collapsible tube. A special type of Hermit-Padé 

approximants technique is presented and employed to 

analyze the flow structure. The chief merit of this new 

method is its ability to reveal the dominant singularity in the 

flow field together with solution branches of the underlying 

problem in addition to the one represented by the original 

series. 

2. The Formulation of the Problem and 

Analysis 

Consider the transient flow of a viscous incompressible 

fluid in a collapsible tube. We take a cylindrical polar 

coordinate system, where oz lies along the center of the tube 

( , , )r zθ , r is the distance measured radially and θ  is the 

azimuthal angle. Let u and v be the velocity components in 

the directions of z and r increasing respectively. 

Assume, 
0

1r a tα= −  where α  is a constant of 

dimension [
1T −

] which characterizes unsteadiness in the 

flow field, 0a  is the characteristic radius of the tube at time t 

= 0 as shown in the figure below. 

 

Figure 1. Collapsible tube 

For axisymmetric unsteady viscous incompressible flow, 

the governing equations are as follows: 

Continuity equation 

( )
0

rv u
r

r z

∂ ∂+ =
∂ ∂

                                      (1) 

Navier-Stokes equations 

21u u u p
u v v u

t z r zρ
∂ ∂ ∂ ∂+ + = − + ∇
∂ ∂ ∂ ∂

                   (2) 

2

2

1
( )

v v v p v
u v v u

t z r r rρ
∂ ∂ ∂ ∂+ + = − + ∇ −
∂ ∂ ∂ ∂

               (3) 

Energy equation 

2

p

T T T
c u v K T

t z r
ρ ∂ ∂ ∂ + + = ∇ ∂ ∂ ∂ 

                  (4) 
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where, 

2 2
2

2 2

1∂ ∂ ∂∇ = + +
∂ ∂ ∂r r r z

, 

P is the pressure, 

ρ  is the density, 

v is the kinematic viscosity of the fluid, 

T is the temperature, 

K the coefficient of thermal conductivity, 

u  is the coefficient of viscosity and 

PC  is the specific heat capacity at constant pressure. 

The appropriate boundary conditions are: 

Regularity of solution along z- axis i.e. 

0
u

r

∂ =
∂

, 0v = , 0
T

r

∂ =
∂

, on 0r =                    (5) 

The axial and normal velocities at the wall are prescribed 

as: 

0u = , 
a

v
t

∂=
∂

, 0

0
1

T z
T

a tα
=

−
, on r = a (t)               (6) 

Introducing the stream function ψ  and vorticity ω  as 

follows: 

1
u

r r

ψ∂=
∂

, and 
1

v
r z

ψ− ∂=
∂

                           (7) 

2

2 2

1 1v u

z r r z r r

ψ ψω ∂ ∂ − ∂ ∂= − = +
∂ ∂ ∂ ∂

                      (8) 

Eliminating pressure p from (2) and (3) by using (7) and 

(8), we obtain 

2

2 2

1 ( , )
[ ]

( , )
v

t r r z r z r

ω ψ ω ω ψ ωω∂ ∂ ∂+ + = ∇ −
∂ ∂ ∂

, 
2ω ψ= −∇

   (9) 

Also, using (7) in (4), we have 

21 ( , )

( , )
p

T T K
T

t r r z c

ψ
ρ

∂ ∂+ = ∇
∂ ∂

                   (10) 

The boundary conditions become 

0
r

ψ∂ =
∂

, 
da

a
z dt

ψ∂ = −
∂

, 
0

1

T z
T

tα
=

−
 and ( )r a t=    (11) 

1
0

r r r

ψ∂ ∂  = ∂ ∂ 
, 0

z

ψ∂ =
∂

, 0
T

r

∂ =
∂

            (12) 

Introducing the following transformations: 

0
1

r

a t
η

α
=

−
, 

2

0 ( )

2

a zFα ηψ = , 

( )3

0

( )

2 1

zG

a t

α ηω
α

−=
−

, 0

0

( )

1

T z
T

a t

θ η
α

=
−

                                        (13) 

Substituting (13) into equations (9)–(12), we have 

1 ( )
3

d d G G dF d G dG
R F G

d d d d d

η η
η η η η η η η η

    = − + +   
    

, 

1d dF
G

d dη η η
 =  
 

                                    (14) 

2d d dF d d
PR F

d d d d d

θ θ θη θ η ηθ
η η η η η
   = − + +   
   

            (15) 

1 ( )
0

d d G

d d

η
η η η
  = 
 

, 0F = , 0
d

d

θ
η

= , 0η =              (16) 

0
dF

dη
= , 1F = , 1θ =  and 1η =                (17) 

where, 
2

0

2

a
R

v

α=  is the Reynolds number and 
2

0

2

pc a
PR

K

ρ α
=  is a 

product of Prandtl number and Reynolds number (i-e Peclet 

number). 

3. Solution of the Problem  

By assuming a power series expansion, we solve equations 

(14 - 17) for small Reynolds number of the form: 

0

i

i

i

F F R
∞

=

=∑ , 
0

i

i

i

G G R
∞

=

=∑  and 
0

i

i

i

Rθ θ
∞

=

=∑           (18) 

Substituting equation (18) into equations (14 – 17) and 

collecting the coefficients of like powers of R, we have the 

following Zero order and First order equations are:  

Zero
th

 order 

0
( )1

( ) 0
d Gd

d d

η
η η η

= , 0
0

( )1
( ) 0

d Fd
G

d dη η η
= = , 0

( )
( ) 0

dd

d d

θη
η η

=                                         (19) 

With boundary conditions 

0
( )1

( ) 0
d Fd

d dη η η
= , F0 = 0, 0 0

d

d

θ
η

= 	on η = 0 

0 0
dF

dη
= , F� = 1,	θ0 = 1 on η = 1 

First order 
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0 0 0 01
0 0

( )1
( ) ( ) 3

G dF G dGd Gd d
F G

d d d d d

η η
η η η η η η η η

= − + +   (20) 

G1 = 
1

1
( )

dFd

d dη η η  

20 0 01
0 0 0( )

dF d ddd
P F

d d d d d

θ θθη θ η ηθ
η η η η η

 = − + + 
 

  (21) 

With boundary conditions 

1
1

( ) 0
dFd

d dη η η
= , F1 = 0, 1 0

d

d

θ
η

= , on η = 0 

Solution of Zero
th

 order 

F0 = 2η 2
 -η 4

 

G0 = -8η  

0θ  = 1                                            (22) 

Solution of First order 

2
2 2 2

1
( 1) ( 10)

36
F

η η η= − −  

4 2

1

2
(2 12 7)

3
G η η= − +  

2 2

1 ( 1)( 4)
4

Pθ η η= − − −                            (23) 

And finally the complete solution up to the 4
th

 order can be 

written in the form of series of function as 

2 2 2
2 4 2 2 2 2 2 6 4( ) (2 ) ( 1) ( 10) ( 1) (2 101

36 10800

R R
F

η ηη η η η η η η η= − + − − − − − +  

3 2
2 2 2 10 8 6596 1057) ( 1) (39 1287 33108

19051200

R ηη η η η η+ − + − − + −  

4 2 4195627 539468 731546) ( )O Rη η− + − + .                                                                        (24) 

2
4 2 8 6 4 22

( ) 8 (2 12 7) (3 105 408 705
3 135

R R
G

η ηη η η η η η η η= − + − + − − + − +  

3
12 10 8 6 4271) (52 1365 25515 125300 275380

113400

R η η η η η η+ + − + − + −  

2 4286587 95360) ( )O Rη− + + .                                                                                              (25) 

(
2

2 2 2 2 2 2( ) 1 ( 1)( 4) ( 1) ( 1) ( 13)
4 288

PR PRθ η η η η η η= − − − + − − − −  

)
3

4 2 2 2 2 6 4(32 175 257 ) ( 1)[4( 1) ( 60
259200

PR
P η η η η η η− − + − − − − +  

2 10 8 6 4417 918) (25 794 9781 27669Pη η η η η+ − + − + − +  

{ }2 2 8 6 4 233306 23169)) 9 (64 714 8011 2271Pη η η η η+ − + + − + −  

422261)] ( )O R− +                                                                                                                       (26)

4. Conclusion 

We observed that the fluid axial velocity profile is 

parabolic with maximum value at centerline and minimum at 

the plates. It is interesting to Axial velocity profile during 

tube con-traction (R > 0). 

Note that the fluid axial velocity generally declines with 

rise in tube contraction due to the strong influence of the 

negative transmural pressure owing to marked reduction of 

rigidity (i.e. R > 0). In reality, this is likely, since contraction 

brings about a reduction in the tube’s cross-sectional area, 

hence, decreasing the amount of flow passing through the 

compressed region. Table 5.01, shows the convergence of the 

dominant singularity Rc in the flow field together with its 

corresponding exponent αc, as well as the asymptotic 

performance of wall skin friction and pressure gradient as the 

flow Reynolds number tends to zero. It is noteworthy also 

that Rc is the bifurcation point and lies in the negative real 

axis of the flow Reynolds number R, i.e., the area 

representing tube’s contraction. This critical value of 

Reynolds number enables the biomedical engineers to 

determine accurately the maximum expansion of the tube 

walls due to the variation in the tube’s external and internal 

pressure i.e., a0 = 2 υRc / α. Figures 2and 3 show the sketch 
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of bifurcation diagrams for the skin friction and fluid axial 

pressure gradient parameters. For tube’s contraction i.e., 

R > 0, only one solution branch exist i.e., type I. This is the 

main solution branch and it shows that the wall skin friction 

and fluid axial pressure gradient increase with increase in R. 

In the expansion region i.e., R < 0, two solution branches 

are identified (i.e., type I, II). A simple turning point with 

exponent αc = 0.5 exits between type I and type II solution 

branches i.e., Rc. We observed that the type II solution is 

physically unreasonable but mathematically interesting. It is 

interesting to note that the turning point here also 

corresponds to the dominant singularity in the flow field. 

 

Figure 2. A sketch of bifurcation diagram for skin friction. 

 

Figure 3. A sketch of bifurcation diagram for axial pressure gradient. 

 

Finally, in this paper, we have proposed a new form of 

series summation and improvement technique based on the 

generalizations of Padé approximants i.e., a special type of 

Hermit-Padé approximant. We have applied this method to 

investigate the problem of squeezing flow in parallel plate’s 

viscometer with great success. The chief novelty of this 

procedure is its ability to reveal the dominant singularities 

together with solution branches of the underlying nonlinear 

problem in addition to the branch represented locally by the 

original series. Generally, we have found that this new 

method is very competitive. However, we have not yet 

develop a theory that would explain its strengths and 

limitations and so we have relied on intelligent numerical 

investigation. 

Appendix 

A1: The Maple procedure to solve the equations (23) to 

(26). 

# Here we declare the arrays to store the computed results 

F:=array (0..34): G:=array (0..34): Fr:=array (0..34): 

Gr:=array (0..34): 

# Here we input the zero order solution F [0] and G [0]. F 

[0]:=(2*r^2-r^4): G [0]:=-8*r:  

Fr [0]:=diff (F [0], r): Gr [0]:=diff (G [0], r): 

# This computes the higher order teams i.e. n>0. for n from 

1 by 1 to 43 do  

A1:=normal (1/r*sum (g [i]*fr [n-i-1]+f [i]*(g [n-i-1]/r-

gr [n-i-1]), i=0..n1)): A2:=normal (r*gr [n-1]+3*g [n-1]): 

A:=R*(A1+A2): 

A1:=0: A2:=0: g11:=normal (r*(int (A, r)+K)): A:=0: 

g1:=normal (int (g11, r)/r): 

g11:=0: f11:=normal (r*(int (g1, r)+M)): f1:=normal (int 

(f11, r)): 

r:=1: K:=normal (solve (f11=0, K): M:=normal (solve 

(f1=0, M)): r:='r': 

f11:=0: F [n]:=normal (f1): f1:=0: G [n]:=normal (g1): 

g1:=0: Fr [n]:=normal (diff (F [n], r)): Gr [n]:=normal 

(diff (G [n], r)): K:='K': M:='M': print (F [n]); print (G 

[n]); 

# Here we compute the wall skin friction coefficients. print 

(evalf (sub (r=1, G [n])));  

od: quit (); 
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