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Abstract: In the present work the structural-parametric model of the piezoactuator is determined in contrast electrical 

equivalent circuit types Cady or Mason for the calculation of the piezoelectric transmitter and receiver, the vibration 

piezoactuator and the vibration piezomotor with the mechanical parameters in form the velosity and the pressure. The aim of 

this work is to obtain the structural-parametric model of the electroelastic actuator with the mechanical parameters the 

displacement and the force. The method of mathematical physics is used. Structural scheme of electroelastic actuator for 

nanotechnology is obtained. The transfer functions of the actuators are determined. For calculations control systems for 

nanotechnology with piezoactuator the structural scheme and the transfer functions of piezoactuator are obtained. The 

generalized structural-parametric model, the generalized structural scheme, the generalized matrix equation for the 

electroelastic actuator nano- and microdisplacement are obtained in the matrix form. The deformations of the electroelastic 

actuator for the precision mechanics are described by the matrix equation. 
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1. Introduction 

The electroelastic actuator based on the electroelasticity in 

the form the piezoelectric, piezomagnetic, electrostriction 

effects is used for the precision mechanics in the 

nanotechnology, the nanobiology, the microelectronics, the 

astronomy and the adaptive optics. This actuator are solved 

problems of the compensation of the temperature and gravity 

deformations, the correction of the wave front and the 

precision alignment [1 − 10]. Piezoactuator is the 

piezomechanical device intended for the actuation of the 

mechanisms, the systems or the management based on the 

piezoelectric effect, converts the electrical signals into the 

mechanical movement and the force [1, 6, 9]. 

Piezoactuator nano- and microdisplacement for the 

precision mechanics provide the movement range from 

several nanometers to tens of microns, the sensitivity of up to 

1 nm/V, the loading capacity of up to 1000 N. Piezoactuator 

give high stress and speed of operation, return to the initial 

state when switched off and have very low relative 

displacement less than 1%. Piezoactuator nano- and 

microdisplacement is used in the majority of the scanning 

tunneling microscopes, the scanning force microscopes, the 

atomic force microscopes [1 − 20]. 

The structural-parametric model of the piezoactuator is 

determined in contrast electrical equivalent circuit types 

Cady or Mason for the calculation of the piezoelectric 

transmitter and receiver, the vibration piezoactuator and the 

vibration piezomotor with the mechanical parameters in form 

the velosity and the pressure [2 − 5, 11, 12]. By using the 

method of mathematical physics and solving the wave 

equation with the Laplace transform for the corresponding 

equations of the piezoeffect [6, 9, 10, 20], the boundary 

conditions on loaded faces of the piezoactuator, the strains 

along the coordinate axes, it is possible to construct the 

structural parametric model of the piezoactuator [14, 15]. Its 

transfer functions and structural scheme are determined. 

The generalized structural-parametric model and structural 

scheme, the generalized matrix equation for the electroelastic 

actuator nano- and microdisplacement are obtained in the 

matrix form in general from the wave equation of the actuator 

and the equation of the electroelasticity. 
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2. Structural Model and Scheme 

For clarity, let us consider the problems of the 

piezoelasticity. As the result of the joint solution of the wave 

equation of the piezoactuator nano- and microdisplacement 

equation with the Laplace transform, the piezoeffect equation 

and the boundary conditions on the two loaded working 

surfaces of the piezoactuator, we obtain the corresponding 

structural-parametric model of the piezoactuator [15, 16]. 

The aim of this work is to obtain the structural-parametric 

model of the electroelastic actuator with the mechanical 

parameters the displacement and the force. 

For piezoactuator the deformation corresponds to stressed 

state. If stress T is created in piezoactuator, the deformation 

S  is formed in it. There are six stress components 1T , 2T , 

3T , 4T , 5T , 6T , the components 1T  - 3T  are related to 

extension-compression stresses, 4T  - 6T  to shear stresses. 

The matrix state equations [7, 9, 10] connecting the 

electric and elastic variables for piezoceramics have the form 

( ) ( )( ) ( )( )EεTdD
T+=                               (1) 

( ) ( )( ) ( ) ( )EdTsS
tE +=                                (2) 

The first equation describes the direct piezoelectric effect, 

and the second equation records the inverse piezoelectric 

effect; ( )S  is the column matrix of relative deformations; 

( )T  is the column matrix of mechanical stresses; ( )E  is the 

column matrix of electric field strength along the coordinate 

axes; ( )D  is the column matrix of electric induction along 

the coordinate axes; ( )E
s  is the elastic compliance matrix for 

const=E ; and ( )t
d  is the transposed matrix of the 

piezomodules, ( )T
ε  is the matrix of dielectric constants for 

const=T . 

For polarized ceramics PZT there are five independent 

components 11
Es , 12

Es , 13
Es , 33

Es , 55
Es  in the elastic compliance 

matrix. 

Let us consider the electroelastic actuator. 

In general the equation of electroelasticity [10, 12, 15] has 

following form 

( ) ( ),i mi m ij jS d t s T x tΨ= Ψ +                        (3) 

where ( ),iS x t xξ= ∂ ∂  is the relative displacement along 

axis i of the cross section of the piezoactuator or the 

piezoplate, { ,m m mE DΨ =  is the control parameter E for the 

voltage control, D for the current control along axis m, jT  is 

the mechanical stress along axis j, mid  is the coefficient of 

electroelasticity, for example, piezomodule, ijsΨ  is the elastic 

compliance for control parameter constΨ = . 

The piezoactuator for nano- and microdisplacement on 

Figure 1 has the following properties: δ  is the thickness, h is 

the height, b is the width, respectively { , ,l h bδ=  the length 

of the piezoactuator for the longitudinal, transverse and shift 

piezoeffect. The direction of the polarization axis Р, i.e. the 

direction along which polarization was performed, is usually 

taken as the direction of axis 3. 

The equation of the inverse piezoeffect for controlling 

voltage has the form 

( ),iS x t xξ= ∂ ∂ , ( ) ( ) ( )m mt E t U t δΨ = =  

where iS  is the relative displacement of the cross section of 

the piezoactuator along axis i, ( ),x tξ  is the displacement of 

the section of the piezoactuator, mid  is the piezomodule, 

( )mE t  is the electric field strength along axis m, ( )U t  is the 

voltage between the electrodes, E
ijs is the elastic compliance 

for constE = , indexes i, j = 1, 2, …, 6; m = 1, 2, 3. The 

main size or the working length { , ,l h bδ=  for the 

piezoactuator, respectively, the thickness, the height and the 

width for the longitudinal, transverse and shift piezoeffect. 

 

a) 

 

b) 

Figure 1. Piezoactuator a) for the longitudinal piezoeffect, b) for the shift 

piezoeffect. 

For calculation of the electroelastic actuator nano- and 

microdisplacement is used the wave equation [10, 12, 16, 19] 

for the wave propagation in a long line with damping but 

without distortions. After Laplace transform is obtained the 

linear ordinary second-order differential equation with the 

parameter p, where the original problem for the partial 

differential equation of hyperbolic type using the Laplace 

transform is reduced to the simpler problem [10, 13, 14] for 

the linear ordinary differential equation 

( ) ( )
2

2

2

,
, 0

d x p
x p

dx
γ

Ξ
− Ξ =                    (4) 

with its solution 

( ), x xx p Ce Beγ γ−Ξ = +                   (5) 
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where ( ),x pΞ  is the Laplace transform of the displacement 

of the section of the electroelastic actuator, p cγ αΨ= +  is 

the propagation coefficient, cΨ
 is the sound speed for 

constΨ = , α  is the damping coefficient. 

The constants C and B of the solution the linear ordinary 

second-order differential equation [7] are determined from the 

boundary conditions for the electroelastic actuator 

( ) ( )10, p pΞ = Ξ  for 0x =                        (6) 

( ) ( )2,l p pΞ = Ξ  for x l=  

whence we obtain 

( )
1 2

2sh

le
C

l

γ

γ
Ξ − Ξ

= , ( )
2 1

2sh

le
B

l

γ

γ

−Ξ − Ξ
=  

Therefore, the solution the linear ordinary second-order 

differential equation (5) can be written in the form 

( ) ( ) ( ) ( ) ( )
( )

1 2sh sh
,

sh

p l x p x
x p

l

γ γ
γ

 Ξ − + Ξ Ξ =       (7) 

The system of the equations for the forces on the faces of 

the electroelastic actuator are determined in the following 

form 

( ) ( ) ( )2
0 1 1 10,jT p S F p M p p= + Ξ  for 0x = ,          (8) 

( ) ( ) ( )2
0 2 2 1, )jT l p S F p M p p= − − Ξ  for x l= , 

where ( )0,jT p  and ( ),jT l p  are the mechanical stress. 

From equations of forces acting on the faces of the 

electroelastic actuator nano- and microdisplacement we 

obtain the boundary conditions on loaded surfaces 

( ) ( ) ( )
0

,1
0, mi

j m

ij ijx

d x p d
T p p

dxs sΨ Ψ
=

Ξ
= − Ψ          (9) 

( ) ( ) ( ),1
, mi

j m

ij ijx h

d x p d
T l p p

dxs sΨ Ψ
=

Ξ
= − Ψ  

where 0S  is the cross section area and 1M , 2M  are the 

displaced mass on the faces of the electroelastic actuator. 

From (4), the boundary conditions on loaded surfaces (5), 

the strains along the axes the system of equations for the 

generalized structural-parametric model and the generalized 

parametric structural scheme are determined for Figure 1 of 

the electroelastic actuator with the output parameters the 

Laplace transform for the displacements ( )1 pΞ , ( )2 pΞ  for 

the faces of the electroelastic actuator nano- and 

microdisplacement for the precision mechanics in the form 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 1

1 1 2

1

1 sh chij mi m

p M p

F p p l l p pχ ν γ γ γΨ

 Ξ = ⋅
 

     ⋅ − + Ψ − Ξ − Ξ      

                              (10) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2 2

2 2 1

1

1 sh chij mi m

p M p

F p p l l p pχ ν γ γ γΨ

 Ξ = ⋅
 

     ⋅ − + Ψ − Ξ − Ξ      

where 
0

ij

ij

s

S
χ

Ψ
Ψ = , 

33 31 15

33 31 15

, ,

, ,
mi

d d d

g g g
ν


= 


, 
3 3 1

3 3 1

, ,

, ,
m

E E E

D D D


Ψ = 


, 

33 11 55

33 11 55

, ,

, ,

E E E

ij D D D

s s s
s

s s s

Ψ
= 


, { , ,l h bδ= , { ,E Dc c cΨ = , 

{ ,E Dγ γ γΨ = , 

miν  is the coefficient of the electroelasticity, for example, 

piezomodule, mig  is the piezomodule for the current-

controlled piezoactuator, ( )1F p , ( )2F p  are the Laplace 

transform of the forces on the faces. Figure 2 shows the 

generalized structural scheme of the electroelastic actuator 

nano- and microdisplacement corresponding to the set of 

equations (10) for the Laplace transform of the displacements 

of the faces. 

The generalized transfer functions of the of the 

electroelastic actuator are the ratio of the Laplace transform 

of the displacement of the face actuator and the Laplace 

transform of the corresponding control parameter or the force 

at zero initial conditions. 

The generalized structural scheme and the generalized 

transfer functions of the electromagnetoelastic actuator nano- 

and microdisplacement are obtained from the generalized 

structural parametric model of the electromagnetoelastic 

actuator for the precision mechanics. 
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Figure 2. Generalized structural scheme of electroelastic actuator. 

3. Transfer Functions 

The transfer functions of the electroelastic actuator nano- 

and microdisplacement are determined from its generalized 

structural-parametric model, taking into account the 

generalized equation of electroelasticity, its wave equation 

and the equation of the forces on its faces. 

Therefore, the Laplace transforms of displacements for 

two faces of the actuator are dependent from the Laplace 

transforms of the general parameter of control and forces on 

two faces and are written in the matrix form. From (10) for 

the Laplace transforms of the displacements of two faces of 

the actuator yields the matrix equation in the following form 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

1 11 12 13
1

2 21 22 23
2

m p
p W p W p W p

F p
p W p W p W p

F p

 Ψ
   Ξ  =        Ξ     

 

  (11) 

where the transfer functions 

( ) ( )
( )

1 2
11 2 th

2

mi
ij

m ij

p l
W p M p

p A

ν γχ γΨΞ   = = +  Ψ   
 

( ) ( )

( )

2 1 24 3
1 2

1 2 2 2

2

th( )

1 2

th( )

ij

ij ij

ij

M M
A M M p p

c l

M M
p p

l cc

χ
χ

γ

χ α α α
γ

Ψ
Ψ

Ψ

+
= + +

 +
 + + + +
  

 

( ) ( )
( )

2 2
21 1 th

2

mi
ij

m ij

p l
W p M p

p A

ν γχ γΨΞ   = = +  Ψ   
 

( ) ( )
( ) ( )

1 2
12 2

1 th

ij

ij
ij

p
W p M p

F p A l

χ γχ
γ

Ψ
Ψ Ξ

= = − + 
  

 

( ) ( )
( ) ( ) ( )

( ) ( )
1 2

13 22
2 1 sh

ij

ij

p p
W p W p

F p F p A l

χ γξ
γ

ΨΞ
= = = =  

( ) ( )
( ) ( )

2 2
23 1

2 th

ij

ij
ij

p
W p M p

F p A l

χ γχ
γ

Ψ
Ψ Ξ

= = − + 
  

 

Let us find the displacement of the faces the electroelastic 

actuator in the stationary regime for ( ) ( )0 1m mt tΨ = Ψ ⋅ , 

( ) ( )1 2 0F t F t= =  and inertial load. 

The static displacement of the faces the electroelastic 

actuator ( )1ξ ∞  and ( )2ξ ∞  can be written in the following 

form 

( ) ( ) ( )0 2
1 1

1 2

2
lim

mi m

t

l M m
t

M M m

ν
ξ ξ

→∞

Ψ +
∞ = =

+ +
         (12) 

( ) ( ) ( )0 1
2 2

1 2

2
lim

mi m

t

l M m
t

M M m

ν
ξ ξ

→∞

Ψ +
∞ = =

+ +
        (13) 

( ) ( ) ( )1 2 1 2 0( ) lim( ) mi m
t

t t lξ ξ ξ ξ ν
→∞

∞ + ∞ = + = Ψ         (14) 
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where m  is the mass of the electroelastic actuator, 1 2,M M  

are the load masses. 

Let us consider a numerical example for 10
33 4 10d −= ⋅

m/V, 200U = V, 1 1M = kg and 2 4M = kg we obtain the 

static displacements of the faces of the piezoactuator 

( )1 64ξ ∞ = nm, ( )2 16ξ ∞ = nm, ( ) ( )1 2 80ξ ξ∞ + ∞ = nm. 

After transformation we obtain the expression the transfer 

function for the voltage-controlled piezoactuator under the 

longitudinal piezoeffect at zero source resistance with one 

face rigidly fixed in the following form 

( ) ( )
( ) ( )

2 33
21 2

3 2 33 cth
E

p d
W p

E p M p

δ
δχ δγ δγ

Ξ
= =

+
        (15) 

From (15) using the approximation of the hyperbolic 

cotangent by two terms of the power series at 2m M<< and 

0 0,01 Ecω δ< <  we obtain transfer function 

( ) ( )
( )

2 33
21 2 2

3 2 1t t t

p d
W p

E p T p T p

δ
ξ

Ξ
= =

+ +
           (16) 

2 33
E

tT M C= , ( ) 23t m Mξ αδ= , ( )33 0 33
E EC S s δ=  

where tT  is the time constant and tξ  is the damping 

coefficient, 33
EC  is the is rigidity of the piezoactuator. 

For the approximation of the hyperbolic cotangent by two 

terms of the power series, the following expressions of the 

transfer function of the voltage-controlled piezoactuator at 

zero source resistance is obtained for the elastic-inertial load 

at 1M → ∞ , 2m M<<  under the transverse piezoeffect 

( )
312

2 2
11

( )
( )

( )
1 ( 2 1)E

e t t t

d hp
W p

U p
C C T p T p

δ

ξ

Ξ
= =

+ + +
  (17) 

( )2 11
E

t eT M C C= + , ( )2
11 2 113
E E E

t eh C c M C Cξ α  = + 
 

 

where ( )U p  is the Laplace transform of the voltage, tT  is 

the time constant and tξ  is the damping coefficient of the 

piezoactuator. 

Therefore, we obtain on Figure 3 for (17) the structural 

scheme of the voltage-controlled piezoactuator at zero source 

resistance with one fixed face under the transverse 

piezoeffect for the elastic-inertial load. 

 

Figure 3. Structural scheme of voltage-controlled piezoactuator at zero 

source resistance with one fixed face for elastic-inertial load. 

The expression for the transient response of the voltage-

controlled piezoactuator under the transverse piezoeffect for 

the elastic-inertial load is determined 

( ) ( )
2

1 sin
1

t

t

m t t

t

t

T
e

t t

ξ

ξ ξ ω φ
ξ

 − 
 = − + 

− 
 
 

                        (18) 

( )31

11

δ
ξ

1

m
m E

e

d h U

C C
=

+
, 

21 t
t

tT

ξ
ω

−
= , 

21
arctg

t

t
t

ξ
φ

ξ

 −
 =
 
 

 

where mξ  is the steady-state value of displacement for the 

voltage-controlled piezoactuator, mU  is the amplitude of the 

voltage in the steady-state. 

Let us consider a numerical example for the voltage-

controlled piezoactuator from the piezoceramics PZT under 

the transverse piezoelectric effect with one fixed face for the 

elastic-inertial load 1M → ∞ , 2m M<<  and input voltage 

with amplitude 50mU = V at 10
31 2.5 10d −= ⋅ m/V, 20h δ = , 

2 4M = kg, 7
11 2 10EC = ⋅ N/m, 70.5 10eC = ⋅ H/m we obtain 

values the steady-state value of displacement and the time 

constant ξ 200m = nm, 30.4 10tT −= ⋅ c. 

Therefore, for calculations control systems with the 

piezoactuator for the precision mechanics the structural 

scheme and the transfer functions of the piezoactuator nano- 

and microdisplacement for the precision mechanics are 

obtained. 

4. Results and Discussions 

We obtain the structural scheme of the electroelastic 

actuator nano- and microdisplacement for the precision 

mechanics. From generalized structural-parametric model of 

the electroelastic actuator after algebraic transformations we 

obtain the transfer functions of the electroelastic actuator. 

It is possible to construct the generalized structural-

parametric model using the solutions of the wave equation of 

the actuator and taking into account the features of its 

deformations along the coordinate axes. 

For calculations control systems in the nanotechnology, the 

nanobiology, the microelectronics, the astronomy and the 

adaptive optics with the electroelastic actuator nano- and 

microdisplacement for the precision mechanics its transfer 

functions are obtained. 

5. Conclusions 

Taking into account the features of the deformations along 

the axes and using the solutions of the wave equation, it is 

possible to construct the structural-parametric model and 

structural scheme of the electroelastic actuator nano- and 

microdisplacement for the precision mechanics and to 

describe its dynamic and static properties. 

The structural scheme and the transfer functions of the 

piezoactuator are obtained from structural parametric model 
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of the piezoactuator for the precision mechanics. 

The generalized structural-parametric model, the 

generalized structural scheme, the generalized matrix 

equaion for the electroelastic actuator nano- and 

microdisplacement in the matrix form with the output 

parameters displacements are obtained. 

The structural-parametric models, the structural schemes 

of the piezoactuator for the transverse, longitudinal, shift 

piezoelectric effects are determined from the generalized 

structural-parametric model of the electroelastic actuator 

nano- and microdisplacement for the precision mechanics. 

From the solution of the wave equation, the equations of 

the electroelasticity and the deformations along the axes with 

using the Laplace transform, the generalized structural-

parametric model and the generalized structural scheme of 

the electroelastic actuator nano- and microdisplacement with 

the mechanical parameters the displacement and the force are 

constructed for the precision mechanics. 

The deformations of the electroelastic actuator for the 

precision mechanics are described by the matrix equation for 

the transfer functions of the actuator. 
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